Dr. Mikovits – Dr. Cheney on XMRV and CFS Transcript (2/20/10), Part 1

February 20, 2010

Posted by Cort Johnson

Discuss this article on the forums

Written by FernRhizome

1410-pcr.jpg(transcribed by Kim)

Cheney…in molecular biology from George Washington University and did her PhD work in the area of retrovirology, specifically how retroviruses, and specifically HIV, infect human monocytes. She studied under the legendary Dr. Frank Ruscetti at NCI, who is considered to be the father of human retrovirology, being involved in the discovery of the first human retrovirus, HTLV I in 1981. I think it’s also true, in my opinion anyway, that Judy is a superb scientist, very good in the laboratory, and it’s perhaps no accident that it needed that kind of superb scientist, laboratory scientist, to find this virus, as it has some difficulties associated with it in terms of looking at it and finding it and measuring it and we’ll get into that. So I’d like to welcome Dr. Mikovits, Judy are you on the line?

Judy – (inaudible) thank you.

Cheney – We basically had a number of questions submitted from a large group of patients from all over this country and really, all over the world. And I sort of selected, I grouped them into different categories. There’s a category on infectiousness. There’s a category on what makes this virus tick in terms of how it might be stimulated or suppressed. Some of it’s biology and some questions about therapy. And so we’ll try to pull relevant questions from each of these groups and although your question may not be answered specifically, hopefully it will fall into one of these groupings. I’d like to start with Judy and ask her a couple of questions having to do with how hormones might interact with XMRV, specifically androgens &/or estrogens, or even any other hormones. Judy, can you answer that?

Judy – We know from work in the laboratories of Bob Silverman and Steven Goff from Columbia University that the retrovirus XMRV has what’s known as the cis-acting element, literally the on/off switch of the virus, two androgen and hormone responsive elements. And that means that when that virus, when the on/off switch sees certain hormones, it can turn it on &/or off, so what you would want to do is have a balance of hormones and not spikes. And we really don’t know a lot of how exactly they control the expression of the virus or the reservoirs that might be involved given the hormone sensitivities or switch of the virus, but there is a hormone responsive element to the virus that we think will be critical in understanding how it might cause disease.

Cheney – I see. We’ve been looking at hormones here for several years now using the Echo Terrain Map technology which allows us to look at redox shifts, very sensitively in CFS patients. And we see, in cases of hormone testing, both on the scan or under the tongue, a rather transient and immediate responses from a redox perspective, both positive and negative. And my concern about that is that it may not necessarily reflect what happens downstream in case of a virus, but certainly redox shifts, positive or negative, might influence the virus. In that regard, my sense, over time, has been that, perhaps, a balancing act of hormones may be the best way to go and not to rely on one particular hormone to suppress it or worry about another particular hormone activating it. But it’s more about balance than any specific hormone.

Judy – Exactly.

Cheney – That would be my impression from Echo Terrain Map technology. There’s another question, Judy, about…there are some concerns about blood banks and whether things are moving in a direction to defend the blood supply from XMRV.

Judy – We are working here at the Institute both with the National Blood Working Group that was established as soon as our paper in Science came out in October and we are setting up an experimental design to – and very sensitive assays – that as we know from other work aren’tstraightforward in order to protect the blood supply. There is a very active and very large group in this country. We have been contacted by the UK, with a group doing exactly the same thing and we are participating with them to protect the blood supply. And of course, we had said at previous talks and we recommend that, until we know more, CFS patients, whether they’ve been tested or not, simply not give blood in order to prevent spread.

Cheney – Understand. There’s one question about how long it takes to translate scientific information from the laboratory, from the bench, to the bedside. What’s your sense for the translation time from what we’re learning at the bench or in laboratories to actual patient care?

Judy – Actually, we’ve already begun that process, so if you listen to some…decades – that’s really not our policy. We are a translational research institute and we’re actually working with doctors and companies and others right now to translate that. That is why we’re developing sensitive tests for diagnostics and to monitor clinical trials. We’ve actually begun talking with – and as I understand there was a question about a compound known as peptide-T and we’re actually developing drugs in other laboratories or compounds in other laboratories. So we’re laying the groundwork right now and have begun that translational process and we are confident that we can have clinical trials as early as this year, maybe as early as even when the institute opens it’s treatment facility in September.

Cheney – So, in other words, there may be research trials available at Whittemore Peterson as early as September of 2010?

Judy – That’s correct. Other doctors throughout the United States may be able to participate with cohorts. There’s not necessarily a need to come directly here. We’re working with other physicians across the U.S.

Cheney – Are these studies likely to be free to patients who are to participate?

Judy – That is our goal.

Cheney – Okay. Why do you think peptide-T would actually inhibit XMRV? Is there a scientific basis for that? Or is just hoped that it will?

Judy – Actually, no. On that note, Candice Pert who actually developed, discovered it and runs the company that has run clinical trials with peptide-T in HIV disease had actually, more than a decade ago, run a clinical trial in men with CFS and they saw improvement. And when our paper came out, she said – and I understand why now – she contacted me immediately and said, “We have an opportunity, we have some drug that is ready and certified by the FDA, so it’s a limited amount now, but we could run some small studies and actually follow XMRV. Peptide-T is known to interact with the monocyte, which is a cell type in your innateimmune response, that’s known to be infected in, and actually play a role in retroviral diseases. And as we mentioned, that was my PhD thesis. So, we actually had some sound scientific rationale to actually use peptide-T in this cohort with XMRV.

Cheney – I’d like to explore another sort of generic issue and that has to do with testing. And beyond that, the recent reports out of the United Kingdom of negative results for the testing by PCR of blood in CFS patients. And beyond that, the fact that some patients who have been tested at VIPdx Laboratories in Reno using the WPI, Whittemore Peterson validated testing procedures are also negative. And so, I’d like you to comment a little bit about the reasons why you can get negative results and importance of methodologies.

Judy – The methodologies are really critical in studying XMRV because there’s as much that we don’t know about it as we do know about it. It is apparent from the UK studies as well as the German study in prostate cancer who looked at more than 500 samples and didn’t find XMRV either by PCR and some other techniques, it is clear that what we don’t know about the virus with regard to is – it’s reservoirs – what cells it’s living in, where it is in the body. As much as we do know about the virus, so unless you use all four techniques in the Science paper for isolating it and determining the presence of the virus – in that case, failure to detect it by PCR does not mean it’s not there. And even by the culture method that is used by VIPdx right now, we are working very hard to get the serology, which means that the patient would have had an immune response to the virus and we can detect that serologically in our paper, but we don’t have that test online yet as a diagnostic or a clear certified test yet, but we hope to have that test within the next month or so, as I’ve said, maybe within weeks, to be validated for clinical use. If you went just by the virus – that is, I can’t isolate it or VIP can’t isolate it by the techniques in our paper, and you have the antibody, it is evidence that you’re infected and since the retrovirus is a lifelong infection, we simply then just don’t know the reservoir where this virus is. So this is a very low copy number, meaning it is very low level in peripheral blood. And really, unless you use all four techniques that are described in our Science paper, and go to the WPI website where we have detailed the differences in the methodologies in the different studies to give you an idea of the complexity of the issues, but also what’s necessary to detect the virus. So, we will, very shortly, have all of the testing available. (ending at 11:25)

Part 2 [10mins to 20mins], ,transcribed by Kim and Lilly.

Judy (continued): So we will very shortly have all of the testing available but for now the best way to look for the virus is to participate in research studies and I know there was one question on: “You told us that research studies are going to be online, when are they are coming online at the WP institute?” Well we received word, we were waiting for word from our institutional review board for human assurance. We were waiting for approval of our studies, literally since October and given that this is a new human retrovirus our institutional review board went out really in every way to make sure that we protect patient privacy and now they are convinced we should have approval at the end of this month, in March for an XMRV study across a number of diseases and patient populations, next week. So if you’ve applied to the website and you’re waiting for an answer and you haven’t gotten one, we are going to start working through that list next week and begin these studies to do large-scale testing. And we at the institute can do all 4 tests, and we will know beyond a shadow of a doubt if you’re infected with XMRV.

Cheney: In one of the 2nd papers published out of the UK, I think it was the Jonathan Kerr paper they indicated a 4.6% serologic positivity in the UK population with an n-value over 500 and yet reported no such serologic evidence in CFS. Do you have any explanation for that?

Judy:
They stated in their paper that the antibodies … which were not the antibody we used, and we are disappointed that they did not ask us either for clinical control virus or our reagents which could have answered that question. Not discouraged, but disappointed. At any rate the antibody was written in the paper not to detect the XMRV gag. So it’s very important to use, so they suggested it was just cross-reactivity with other mouse viruses and it implied that that’s what we were seeing as well. But we did validate our reagents and we know beyond a shadow of a doubt that they do detect XMRV. So it’s simply a matter of the reagents they used just did not detect XMRV and they said it in their paper so it’s a mystery why they published those data, knowing what they know.

Cheney: I have one question. Does XMRV get into the brain and is there a specific area of the brain it is more likely to affect?

Judy: We do not know that answer. I would hypothesize given what we just talked about, given about monocytes, the brain monocyte is called a microglial cell. So what we know from all human retroviruses is that they infect these cells of the immune response, that the traffic actually goes to the brain. So we don’t know what other cell types in the brain could be infected but we would suspect that the microglia, the brain monocyte, actually takes the virus to the brain, and those studies have been done in other retroviruses. And of course it’s much too early to know those answers with XMRV.

Cheney: One question was, specifically, could this affect the autonomic nervous system?

Judy: It certainly could.

Cheney: I’d like to move into another group of questions that have a lot of patients interested in and concerned about. This is the issue of infectiousness. They have been found to be infected by culture at VIPdx and are concerned about limiting the transmission from themselves to their loved-ones and family members, sexual partners and others and are very concerned about what they should do.

Judy: Again on our website on the presentation that I gave in Santa Barbara, we put those slides up and they detail that because we don’t know all of the details of transmission but we all know of situations in which people are infected in families and other situations. We think of using as much as possible HIV universal precautions. Those precautions are easily found on the website, but again they suggest that you practice safe sex, that don’t share toothbrushes, razors, things that could transmit blood. That you don’t give blood as we mentioned earlier, and just practice universal precautions. There are certainly other things that we can do, as soon as possible we know the information about the mode of transmission we will publish as soon as possible and try to protect everyone. But the best way to protect is to diagnose, to know if you’re infected, and if you are infected then practice universal precautions.

Cheney: One of the comments that one of our patients had was when they read the universal precautions they tend to concentrate on ways that you might interact with people with blood. Their question was if this virus is found in body-secretions such as saliva for example, is there a concern about transmission from other body secretions other than blood itself?

Judy: Well there certainly is a concern but since we don’t have those data there is also a concern about maybe having the public panic. The only other body secretion we’ve ever isolated the virus from is prostatic secretions and again that’s in the case of the prostate cancer. And so we simply don’t have enough data, but there are ways to protect yourself in the cases of suspecting saliva transmission. You know simply don’t share glasses, use a different setting in the dish washer mode and hot water, things like that. It’s perhaps over-precautious, but certainly there’s no reason to accept that it’s not. You know HIV/Aids you can certainly kiss, hug infected people and their not spreading virus that way. So there is no reason to suspect that you can’t have normal contact with infected individuals.

Cheney: One of the things that interested me was the potential infection rate in the country of 3.8% which rounds out to about 10 million Americans who may be infected but are not sick compared to let’s say 1 million CFS patients who are infected and let’s say disabled, suggesting that the majority of people, maybe even as much as 90% of people that become infected do not get CFS, although they actually may be infected with XMRV. That being said, then that could make the relative infectiousness of this sort-of subterranean in that it could be transmitted but since it’s not causing disease, or apparent disease anyway in the great majority of those infected, it’s hard to evaluate the infectiousness of this based upon watching an isolated case and those around them. On the other hand it also suggests that if only 10 million Americans are infected after goodness maybe decades of presence that this must not be a terribly-infectious agent.

Add Your Comment

Comments on this entry are closed.

Previous post:

Next post: